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Using a 4D-QSAR approach (software Quasar) allowing for multiple-conformation, orientation,
and protonation-state ligand representation as well as for the simulation of local induced-fit
phenomena, we have validated a family of receptor surrogates for the neurokinin-1 (NK-1)
receptor system. The evolution was based on a population of 500 receptor models and simulated
during 40 000 crossover steps, corresponding to 80 generations. It yielded a cross-validated r2

of 0.887 for the 50 ligands of the training set (represented by a total of 218 conformers and
protomers) and a predictive r2 of 0.834 for the 15 ligands of the test set (70 conformers and
protomers). A series of five “scramble tests” (with an average predictive r2 of -0.438)
demonstrates the sensitivity of the surrogate toward the biological data, for which it should
establish a QSAR. On the basis of this model, the activities of 12 new compounds - four of
which have been synthesized and tested in the meantime - are predicted. For most of the
NK-1 antagonists, the genetic algorithm selected a single entity - out of the up to 12 conformers
or protomers - to preferably bind to the receptor surrogate. Moreover, the evolution converged
at an identical protonation scheme for all NK-1 antagonists. This indicates that 4D-QSAR
techniques may, indeed, reduce the bias associated with the choice of the bioactive conformation
as each ligand molecule can be represented by an ensemble of conformations, orientations,
and protonation states.

Introduction
The Neurokinin-1 Receptor System. The human

neurokinin-1 receptor (NK1R) is one of a family of
neuroreceptors involved in various signal-transduction
pathways, including nociception, nausea, bronchiocon-
striction, vasodilation, and visceral smooth muscle
contraction.1,2 NK1R binds the undecapeptide neuro-
transmitter substance P (SP, Arg-Pro-Lys-Pro-Gln-Gln-
Phe-Phe-Gly-Leu-Met-NH2), discovered in 1931 by von
Euler and Gaddum,3 with a binding affinity in the 0.05-
0.5 nM range.4 Two other neurokinin receptor sub-
classes are known: the neurokinin-2 receptor (NK2R)
and the neurokinin-3 receptor (NK3R). Historically,
NK1R has been considered to be the receptor for SP,
NK2R that for neurokinin A, and NK3R that for
neurokinin B. However, this simple picture is compli-
cated by the poor selectivity of the various NK receptors
for the various neurotransmitters. Evidence has been
presented that NK1R exists in two states: an SP-
specific state and a general state which binds SP, NKA,
and NKB with similar affinities.4 A link between
transmission of pain, the induction of inflammatory
processes as a result of noxious stimuli, and the release
of SP has been established. These observations suggest
that SP receptor antagonists may be of significant

therapeutic use in the treatment of a wide range of
clinical conditions, ranging from arthritis, migraine, and
asthma to postoperative pain and nausea.4-6

NK1R belongs to the class of G-protein-coupled recep-
tors.7 On the basis of 2D mutagenesis and fluorescence
experiments,8 the binding sites of SP and of some antag-
onists have been identified, as well as a number of indi-
vidual residues important for binding. Together with
information about the general structure of GPCRs,9,10

low-resolution models of NK1R-antagonist complexes
have been created.11-13 While the general structure of
the NK1R has been inferred based on mutagenesis,
fluorescence, and binding affinity data, the low resolu-
tion inherent in these studies is not conducive to
quantitative prediction of binding affinities of unknown
candidates.14

On the other hand, the binding affinity data of a
variety of NK1R antagonists has allowed the use of
quantitative structure-activity relationship (QSAR)
methods to predict the binding affinities of NK1R
antagonists and thus accelerate the structure optimiza-
tion. A recent study by Takeuchi et al. involved a
constrained search of a diverse set of 72 NK1R antago-
nists, followed by CoMFA analysis.5 Among the issues
investigated was whether in the bioactive conformation
the two aromatic groups important for binding are
parallel or perpendicular to each other. While certain
X-ray structures and solution data indicated that they
were parallel, a different X-ray structure suggested a
perpendicular arrangement. The perpendicular arrange-
ment was found to be lower in energy and furthermore
gave a better correlation than the parallel arrangement,
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both for the training set (a cross-validated r2 of 0.70 vs
0.57) and for an external test set (a predictive r2 of 0.82
vs 0.78).

An experimental study by Sisto et al. identified a
parallel arrangement.15 This was corroborated by a
linear correlation between the photochemical param-
eters (extinction coefficient and fluorescence quantum
yield) of the ligands and their biological activities, where
the parallel stacked configuration responsible for higher
extinction coefficients and lower fluorescence quantum
yields corresponded to higher activities. Horwell et al.
generated structure-activity relationships (SARs) for
a series of peptidic NK1R antagonists and found de-
scriptors such as the surface area, log P, log P2, the total
dipole moment, and the number of methyl groups to be
predictive for binding affinity.16

Quantitative Structure-Activity Relationships.
QSAR is an area of computational research which builds
atomistic or virtual models to predict quantities such
as the binding affinity, toxicity, or pharmacokinetic
parameters of a given molecule. The idea behind QSAR
is that structural features can be correlated with
biological activity. Of particular interest for the bio-
medical research is QSAR based on 3D models because
they allow for the simulation of directional forces:
hydrogen bonds, metal-ligand contacts, polarization
effects, and interaction between electric dipoles. Such
forces are known to play a key role for both molecular
recognition and selective ligand binding.

In contrast to the true biological receptor - where
only one ligand molecule can bind at the time - a QSAR
study is typically based on a series of ligand molecules
binding “simultaneously” to an averaged receptor model.
This may lead to functional-group obscuring, an align-
ment of the ligands (mirroring the pharmacophore
hypothesis) where important functional groups of dif-
ferent molecules occupy identical portions in 3D space.
For example, the -OCH3 substituent of one ligand
might lie on top of the -OH group of another molecule.
When constructing an atomistic surrogate (e.g. a pseu-
doreceptor model17,18), such a 3D arrangement will
hardly permit any H-bond donor or acceptor group to
approach the -OH functionality and to establish a hy-
drogen bond. To remove this problem, we have devised
a procedure referred to as receptor-mediated ligand
alignment.19 Still, two shortcomings remain associated
with atomistic and receptor-surface models based on
averaged receptor entities: receptor-ligand adaptation
(the adaptation of the shape of the binding site by means
of induced fit) and H-bond flip-flop. If the ligand-
receptor interaction energy is determined toward an
averaged receptor model, subtle effects associated with
the adaptation of the receptor to the individual ligand
molecules remain unaddressed. In addition, amino acid
residues at a biological receptor, bearing a conforma-
tionally flexible H-bond donor or acceptor (Ser, Thr, Tyr,
Cys, His, Asn, and Gln residues) can engage in differ-
ently directed H-bonds with dissimilar ligand molecules
- an effect that can also not be simulated with an
averaged receptor, simultaneously binding a series of
ligand molecules in a virtual experiment. Inhibitor-
dependent H-bond flip-flop has been observed, for
example, in the enzyme purine nucleoside phospho-
rylase.20

A more fundamental problem in QSAR is associated
with the mutual alignment of the ligand molecules, i.e.
the choice of the bioactive conformation. Typically, this
entity is found by conformational-search protocols com-
bined with cluster-analyzing algorithms (see, for ex-
ample, refs 21, 22) without direct means to control the
result. If the construction of a pseudoreceptor or a
receptor-surface model is based on incorrect bioactive
conformations, the resulting surrogate is hardly of any
use for predictive purposes. Of course, a variety of tools
have been developed to detect such erroneous prereq-
uisites. While the alignment problem has long been
recognized,21-23 only the more recently developed 4D-
QSAR technologies would seem to provide decent
solutions.24-29

Methods
A receptor-surface model represents a high level of model

abstraction. Here, the essential information about the hypo-
thetical receptor site is provided by means of a 3D envelope,
which surrounds the ligand molecules of the training set at
the van der Waals distance and is populated with properties
mapped onto its surface. The shape of the surface represents
information about the steric nature of the receptor site; the
associated properties represent other information of interest,
such as hydrophobicity, partial charge, electrostatic potential,
and hydrogen-bonding propensity.30 Various algorithms to
generate and validate receptor-surface models have been
described.31-33 Other significant approaches include the con-
struction of 3D models using a 4D formalism,24 the use of a
genetic neural network,25 and the Catalyst concept26,34 as well
as the utilization of self-organizing molecular-field analysis.35

A “quasi-atomistic receptor model” refers to a 3D receptor
surface, populated with atomistic properties (hydrogen bonds,
salt bridges, hydrophobic particles, virtual solvent) mapped
onto it. The Quasar software is based on a true 4D-QSAR
concept: the fourth dimension being the possibility to repre-
sent each molecule by an ensemble of conformations, orienta-
tions, and/or protonation states throughout the entire simu-
lation, thereby reducing the bias associated with the choice of
the bioactive conformation and the ligand alignment. In
contrast to most other approaches in the field, our concept
allows also for the simulation of local induced fit and H-bond
flip-flop. The technical details of the construction of a family
of receptor models in Quasar are published elsewhere27-29 and
shall only be summarized here:

1. Construction of Receptor Envelopes. Induced fit may
be simulated by adapting a van der Waals surface (constructed
about all ligands of the training set) to the topology of each
ligand molecule to be used in the QSAR. This is achieved by
mapping this surface on to a transiently generated inner
envelope, which snugly accommodates the individual ligand
molecule. This procedure - mimicking a local induced fit -
can be performed isotropic (linear) or anisotropic (field-
scaled).36 The rms deviation from the van der Waals envelope
is used to estimate the energy associated with the envelope
adaptation. For model evaluation during the simulated evolu-
tion, this energy contributes to the total energy balance (cf.
eq 1, below). As the magnitude of induced fit cannot be
estimated in the absence of the true biological receptor, it is
typically necessary to perform several runs differing in mode
and magnitude of the induced fit.37

2. Generation of an Initial Family of Parent Struc-
tures. Points on the receptor surface are then randomly
populated with atomistic properties (Table 1), optionally
observing standard distances (2.4-3.2 Å) between H-bonding
particles. While the distributed properties are identical for all
ligand molecules, their exact location on the envelope varies
slightly (rms fluctuations range from 0.2 to 0.8 Å with maximal
individual shifts up to 2.5 Å) depending on the chosen induced
fit. If there is experimental or other evidence for a solvent-
accessible receptor cavity, parts of the envelope may be
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assigned to represent solvent. Alternatively, regions may be
defined as being purely hydrophobic in nature or nonexistent
(void), allowing for shallow binding pockets. Such assignments
can be static in nature or dynamically evolved.28-29

3. Evolution of a Model Family. Using a genetic algo-
rithm (for a detailed description, see, for example, refs 32, 38),
the initial family of receptor models is evolved simulating
crossover events. At each crossover step, there is a small prob-
ability (typically 0.01-0.03) of a transcription error, which is
expressed by a random mutation. Thereafter, those two indi-
viduals of the population with the highest lack-of-fit (rms of
∆G°pred - ∆G°exp obtained from a cross-validation, augmented
by a penalty for the total number and types of properties, the
difference between any other model, and the selectivity within
the provided ensemble of conformations, orientations, and/or
protonation states) are discarded. This process is repeated
until a target cross-validated r2 (typically 0.85-0.95) or the
limiting number of crossover steps is reached.

4. Estimation of Relative Free Energies of Ligand
Binding. In our concept,27-29 we have combined the approach
of Blaney et al.39 with a method of Still et al.40 for esti-
mating ligand solvation energies and a term to correct for the
loss of entropy upon receptor binding following Searle and
Williams:41

where Elig-rec represents the force-field energy of the ligand-
receptor interaction;27,42,43 T∆Sbdg the change in ligand entropy
upon receptor binding;41 Esolv,lig the ligand desolvation energy;40

∆Eint,lig the change in ligand internal energy upon receptor
binding; Eenv adapt,lig the energy uptake required for modifying
the averaged receptor envelope (cf. above).

When using a multiple-ligand representation, the interac-
tions of all conformations, orientations, and protonation states
are calculated toward all members of the receptor-model
family. The contribution of an individual entity to the total
energy is determined using a normalized Boltzmann distribu-
tion:27,28

where wi ) (ΣEbdg,ind/Ebdg,ind,lowest)-1 is the normalizing factor.
Free energies of ligand binding, ∆G°prd, are then predicted

by means of a linear regression between ∆G°exp and Ebdg (cf.
eq 1) using the ligand molecules of the training set:

Slope and intercept of eq 3 are inherent to a given receptor

model and are subsequently applied to predict the relative
binding energy of ligand molecules different from those in the
training set. In contrast to other methods, we calibrate each
receptor system with a training set,27-29,19 rather than apply
an universal function for the various receptor systems.

5. Analysis of the Model Family. A mandatory criterion
to validate a family of receptor models is their ability to predict
relative free energies of ligand binding for an external set of
test ligand molecules, not used during model construction (e.g.
its rms deviation or the predictive r2 value). A more serious
challenge to a model family is the so-called scramble test (cf.
ref 38). Here, the binding data (i.e. ∆G°exp) of the training set
are randomly scrambled with respect to the true biological
values, and the simulation is repeated under otherwise identi-
cal conditions. If, under these circumstances, the ligands of
the test set are still predicted correctly (i.e. a predictive r2 >
0.5), the model is worthless, as it is not sensitive to the
biological data (∆G°exp) used to establish the QSAR. The
ultimate test, however, is the prediction and experimental
verification of the activity of new compounds (cf. below).

Results and Discussion

The NK1R represents an attractive biological system
for the more recently developed 4D-QSAR technology27-29

as the included antagonist molecules not only feature
conformational flexibility and span 4 orders of magni-
tude in binding affinity but also include two protonable
N atoms (a piperazyl or two piperidyl moieties). More-
over, all experimental data have been obtained by a
single laboratory at Boehringer Ingelheim (Germany)44

and can, therefore, be more safely compared than a
collection of literature data would allow.

The 65 NK-1 antagonists used in this study represent
a series of aromatic amide derivatives which display
specific affinity for NK1R. This series is built around a
framework including two aromatic groups, linked by an
amide moiety (Figure 1). Attached to this scaffold are
cyclohexyl, piperadinyl, or piperazinyl rings. While one
aromatic group consists of most of the derivatives of the
3,5-bis(trifluoromethyl)phenyl ring, the substitution at
the second aromatic ring is highly varied (Figure 2).

First, a conformational search was performed on the
monocationic ligands using a Monte Carlo method45 as
implemented in MacroModel 6.5.46 The energy cutoff for
seeding was set at 6 kcal/mol, and all conformers within
25 kcal/mol of the global minimum were saved. The
structures were minimized to a gradient of 0.05 kcal/

Table 1. Properties of Receptor-Surface Particles Used in Quasar

particle (property) nonbonded potential typea electric charge well depth of nonbonded function (kcal/mol)

hydrophobic, neutral 6/12 - -0.024b

hydrophobic, positive 6/12 + electrostatics +0.10 -0.09b

hydrophobic, negative 6/12 + electrostatics -0.10 -0.09b

H-bond donor 10/12 - -5.0/-4.1/-2.3c

H-bond acceptor 10/12 - -5.0/-4.1/-2.3c

salt bridge, positive 10/12 + electrostatics +0.25 -5.0/-4.1/-2.3c

salt bridge, negative 10/12 + electrostatics -0.25 -5.0/-4.1/-2.3c

H-bond flip-flopd 10/12 - -5.0/-4.1/-2.3c

surface solvent symmetric 10/12e - -0.97/-0.80/-0.46c,f

void (shallow pockets) - - -
a The values i,j refer to the attractive and repulsive coefficients of the nonbonded potential function used for the ligand-receptor

interaction. The general form of this potential is: E(r) ) A/ri - C/rj. b This function adapts the form E(r) ) A/r12 - C/r6. The coefficients
A and C are calculated according to A ) -ε(ri + rj)12 and C ) -2ε(ri + rj)6, respectively, and with ε ) (εiεj)1/2. The given figure represents
εj; ri and rj correspond to the van der Waals radii of the two involved atoms. c Values for -O-H‚‚‚Y, >N-H‚‚‚Y, and -S-H‚‚‚Y H-bond
interactions, respectively, where “Y” denotes a virtual H-bond acceptor. Identical values are used for the X‚‚‚O, X‚‚‚N, and X‚‚‚S arrangement
where “X” denotes a virtual H-bond donor. d H-Bond flip-flop particles can adapt their property (H-bond donor or acceptor) to each ligand
molecule within the pharmacophore, depending on its interacting functional group. e To avoid repulsive forces between surface solvent
and any ligand molecule, a symmetric 10/12 potential (mirrored at r ) r°) is used. This represents a possible approximation to a mobile
solvent. f As the virtual particles are different in radius than a water molecule, the associated energy must be corrected for different
volumes: E ) (2rvp/2.75)3E°; e.g. for rvp ) 0.8 Å f E ) 0.197E°. The 2.75 Å corresponds to a mean O-H‚‚‚O H-bond distance.

Ebdg ≈ Elig-rec - T∆Sbdg - Esolv,lig -
∆Eint,lig - Eenv adapt,lig (1)

Ebdg,tot ) ΣEbdg,ind exp(-wiEbdg,ind/Ebdg,ind,lowest) (2)

∆G°prd ) |a| Ebdg + b (3)

4418 Journal of Medicinal Chemistry, 2000, Vol. 43, No. 23 Vedani et al.



(Å‚mol) using a truncated Newton conjugate gradient,47

combined with the AMBER force field48 and implicit
aqueous solvent.40 Unique final structures were sub-
jected to full minimization to low gradient. Due to the
large number of variable torsions (11-17), none of the
ligands conformational space could be exhaustively
sampled - up to 10 000 conformers per ligand were
identified. Although there is no limitation in Quasar for
the number of different conformations, orientations, and
protonation states of a ligand molecule, the induced-fit
simulation may lead to unrealistic results if a too
diverse data set is used.28

For analyzing the Monte Carlo conformational-search
output, five adjacent torsional angles defining the
scaffold were used (Figure 1). For each conformer of each
compound, those torsions defining a “common backbone
conformation” were evaluated (with the exception of
compounds M12, for which the common atoms are not
contiguous, and M29, for which they are not uniquely
defined). Next, the lowest-energy conformer adopting a
common conformation (defined by these five torsional
angles) was selected for each compound and its energy
above the global minimum was evaluated. For each
backbone arrangement, this yielded a set of 65 (the total
number of training and test compounds) conformations.
Examination of these ensembles of backbone conforma-
tions revealed that most of them shared the same
conformation in ring C, despite the fact that the ring-C
conformation was not part of the backbone definition.
The preferred puckering and orientation of ring D
observed in most of these molecules was determined and
subsequently used for all molecules. For those ligands
in which the ring-D orientation was different, the
orientation used was between 0.1 and 0.8 kcal/mol
higher in energy. The conformers used for the final
alignment lie between 0.0 and 4.9 kcal/mol above the
global minimum.

Next, partial charge models were calculated using the
ESP algorithm49 (as implemented in MOPAC 6.050,51)
with the MNDO wave function.52 Solvation energies
were determined with the GB/SA algorithm40 using
MacroModel 6.5.46 Relative energies of the various
ligand conformers were determined with the AMBER
force field after minimization with implicit aqueous
solvent. For each asymmetrically substituted aromatic
ring (A and B), two separate conformations were gener-
ated by rotating the ring by 180°. In the case of two such

rings, four conformers were generated. Methoxy and
isopropoxy groups were also rotated by 180° to yield two
different conformations. In the case of compound M29,
rotation around the diphenyl-carbonyl bond gave three
different positions of the diphenyl group. In all, between
one and six conformers were included. Additionally, two
different protonation states were generated by proto-
nating two amine functions of each ligand, with the
exception of ligands M1, M12, and M19, which all have
a single protonable amine each. This yielded a total of
288 conformers/protomers for the 65 NK-1 antagonists.
Partial charges, solvation energy, and ligand internal
energies were recalculated for each conformer/protona-
tion state. The internal energy was taken relative to the
lowest-energy conformer (from the Monte Carlo search)
of all entities with the same protonation state. The
corresponding ensemble of compound M09 is shown in
Figure 1. A training set comprising 50 molecules (218
conformers and protomers total) was then selected
representing the largest possible diversity from the
whole data set. The remaining 15 ligands (70 conform-
ers/protomers total) were defined as the test set.

The mean envelope was generated using all ligands
but M12, M13, X26, and X30 which feature a cyclic
amide and display a relatively low affinity.53 The
individual envelopes of the 65 ligands of the data set
were then generated using a field-based, anisotropic
algorithm.27-29,36 The resulting “induced fit” ranged
from 0.9 to 1.6 Å with associated energies of 0.8-2.7
kcal/mol. Using an initial population of 500 receptor
models and a transcription-error rate set to 0.02, the
system was allowed to evolve for 40 000 crossover cycles,
corresponding to 80 generations. The simulation reached
a cross-validated r2 of 0.887 and a predictive r2 of 0.834.
These quantities reflect values averaged over the 500
models, which, among themselves, differ in 22-32% of
the mapped 319 properties. The cross-validation was
based on five groups comprising 10 ligands (leave-10-
out). A stereo representation of the receptor surrogate
is depicted in Figure 3; experimental and calculated IC50
values are compared in Table 2; a graphical comparison
is shown in Figure 4.

The rms deviation for the 50 ligand molecules of the
training set of 0.37 kcal/mol corresponds to an uncer-
tainty factor of 1.9 in the IC50 and the maximal
individual deviation (compound M9M, 1.1 kcal/mol) to
a factor 7.1 in the IC50. The corresponding rms for the

Figure 1. Conformer and protomer selection within the NK-1 data set: a, definition of the backbone torsion angles; b-e,
conformations of ligand M09 selected in this 4D-QSAR study.
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15 ligands of the test set is 0.51 kcal/mol (2.4 in the IC50)
and the maximal individual deviation 1.2 kcal/mol
(compound X13, 7.2 in the IC50). The analysis of the
protomer distribution reveals that the evolution con-
verged at an identical protonation scheme for all
antagonist molecules or - when summarized over all
conformers - favors this state by a 98:2 ratio, respec-
tively. This state corresponds to the N atom of ring C
being protonated or, for the piperazyl-bearing ligands,
to the N atom vicinal to ring B. The majority of all
compounds adopt a si orientation (substituent facing the
amide N atom) with respect to ring B: 19 ligands
completely, 21 with a preference of more than 95%, 4
with more than 75%, while the remaining 4 adopt this
orientation with a preference between 52% and 67%.

Seven antagonist molecules (X20, M21, M26, M11,
M9M, M16, and X16) prefer the re (substituent facing
the amide O atom) orientation with preferences ranging
from 57% to 99%. Ten of the 65 antagonists are not
substituted at ring B. Finally, the validity of the model
family was assessed by a series of five scramble tests.
The resulting predictive r2 values of -0.363/-0.324/
-0.421/-0.464/-0.616 (average: -0.438) demonstrate
the sensitivity of the surrogate family toward the
experimental IC50 data, for which it should establish a
QSAR (cf. Figure 4).

On the basis of this surrogate family, the activities
of 12 new compounds (cf. Figure 2c) have been predicted.
Relative to compound M09, the variations include
position and type of the substituents at ring B and an

Figure 2. Schematic representation of (top) the 50 ligands of the training set, (middle) the 15 ligands of the test set, and (bottom)
the 12 compounds analyzed for predictive purposes.
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apolar link replacing the amide bond, as well as the
substituents of ring D (i.e. methyl, isopropyl, tert-butyl).
Except for ligand M95 (featuring a 4-hydroxy substitu-
tion on ring B, IC50 value of 3.2 × 10-8 M), all potential
antagonists are predicted with an IC50 < 1.0 × 10-8 M:
the values range from 9.1 × 10-10 M for compound M77
to 1.0 × 10-8 M for ligand M94. Interestingly, the
replacement of the amide moiety by an ethylene bridge
in compound M72 has little effect on the calculated
activity (3.9 × 10-9 M). As part of a separate project,
four of these compounds (M36, M96, M98, and M99)

have been synthesized and tested in the meantime at
the laboratories of Boehringer Ingelheim (Germany).
While the calculated IC50 value for compound M98 (7.7
× 10-9 M) differs by a factor of 4.3 with the experimen-
tal value of 1.8 × 10-9 M, the predicted activities for
M36 (8.1 × 10-9 M; exptl 4.6 × 10-9 M), M96 (2.4 ×
10-9 M; exptl 1.7 × 10-9 M), and M99 (3.2 × 10-9 M;
exptl 1.5 × 10-9 M) are in excellent agreement with the
experiment.

How can the results obtained with this receptor
surrogate be interpreted? It is obvious for this class of

Figure 3. Stereoscopic view of the surrogate for the NK-1 receptor. Color-coding scheme: red, positively charged salt bridge;
blue, negatively charged salt bridge; yellow, H-bond donor; green, H-bond acceptor; saddle brown, positively charged hydrophobic;
chocolate brown, negatively charged hydrophobic; pink, H-bond flip-flop; gray, neutral hydrophobic. The depicted model corresponds
to the most frequently occurring property, averaged over the 500 receptor models.

Figure 4. Graphical comparison of experimental and predicted binding affinities for the NK-1 receptor: (left) simulation using
correct IC50 data; (right) simulation using scrambled IC50 data. The error bar corresponds to the variation of the predicted IC50

value over the 500 individual receptor models.
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NK-1 antagonists that a polar substitution at ring B
(e.g. the hydroxyl group of ligand M95) reduces the
intrinsic activity because of the higher desolvation
energy (cf. eq 1). Modifications of the halide substitution
pattern on ring B (F or mixed F/Cl patterns, e.g. M77)
combined with small, apolar substituents at ring D
would seem to be most promising due to an optimal
balance between a low desolvation energy and a high
intrinsic affinity (cf. eq 1). The bis-trifluoro substitution
of ring A is certainly a key to high activity. Less obvious
is the role of the amide N atom (which can be highly
active in both the methylated and protonated states) as
well as changes associated with ring D. Here, the
training set might not yet be representative enough to
allow for safe predictions: ligand M9M, for example, is
predicted 7.1 times more active than toward the true
biological receptor. Compared with an earlier study27

using a subset of these compounds (31 ligands, single-
ligand representation: 3D-QSAR), it may be concluded
that 4D-QSAR can handle large data sets with substan-
tial variability in both conformation and protonation
status and still produce more accurate results.

Conclusions
In absence of an experimentally determined receptor

structure, 4D-QSAR techniques provide an elegant

approach to the estimation of free energies of ligand
binding. The Quasar concept developed at our labora-
tory not only allows for the representation of the ligand
molecules by an ensemble of conformation, orientations,
and protonation states but also takes local induced fit
and H-bond flip-flop into account. This approach has
been used to predict the IC50 values of NK-1 antagonists
(featuring both conformational flexibility as well as
multiple protonation states). The results indicate that
the use of 4D-QSAR significantly reduces the bias
associated with the ligand alignment. Moreover, the
selection protocol demonstrates that the technique is
capable of identifying a small number of active confor-
mations and does not prefer a larger selection of lesser-
contributing entities.

The challenge of the NK-1 system presented in this
account was to allow for both different conformation and
protonation states. A previous study included the aryl
hydrocarbon receptor29 where the 131 investigated
dibenzodioxin, dibenzofuran, biphenyl, and polyaromatic
hydrocarbon molecules can adopt up to four different
orientations with respect to the binding pocket. An
ongoing study includes the benzodiazepine/GABAA re-
ceptor where some of the ligands are provided as
racemic mixtures. Again, the Quasar concept was

Table 2. Experimental and Calculated IC50 Values for the NK-1 Data Set: Training Set (top), Test Set (middle), and Predictions
(bottom)a

IC50 (M) IC50 (M)

ligand nconf expt calcd
error

(factor in IC50)
protonation

ratio ligand nconf expt calcd
error

(factor in IC50)
protonation

ratio

M09 4 7.5 × 10-10 1.6 × 10-9 2.1 100:0 M14 8 1.3 × 10-7 6.8 × 10-8 1.9 96:4
X34 4 1.1 × 10-9 1.2 × 10-9 1.1 100:0 X22 2 1.3 × 10-7 1.4 × 10-7 1.1 100:0
X28 4 1.3 × 10-9 1.3 × 10-9 1.0 100:0 M19 2 1.3 × 10-7 7.4 × 10-8 1.8 n/a
M28 4 1.4 × 10-9 2.3 × 10-9 1.6 100:0 X01 4 1.4 × 10-7 2.2 × 10-8 6.4 100:0
X04 4 1.4 × 10-9 8.3 × 10-10 1.7 100:0 X14 4 2.1 × 10-7 8.1 × 10-8 2.6 100:0
X05 4 1.4 × 10-9 2.0 × 10-9 1.4 100:0 M01 2 2.5 × 10-7 4.2 × 10-7 1.7 n/a
X11 8 1.5 × 10-9 2.3 × 10-9 1.5 100:0 M03 8 2.7 × 10-7 3.2 × 10-7 1.2 99:1
M22 4 1.6 × 10-9 1.8 × 10-9 1.1 100:0 M07 8 2.8 × 10-7 2.2 × 10-7 1.3 100:0
X27 4 1.6 × 10-9 1.7 × 10-9 1.1 99:1 X30 1 1.5 × 10-6 1.4 × 10-6 1.1 98:2
X06 4 1.7 × 10-9 2.9 × 10-9 1.7 100:0 M04 4 2.4 × 10-6 2.0 × 10-6 1.2 100:0
M24 2 2.0 × 10-9 2.4 × 10-9 1.2 100:0 M12 2 3.7 × 10-6 4.2 × 10-6 1.1 n/a
M21 4 2.3 × 10-9 6.0 × 10-9 2.6 100:0 M30 4 8.8 × 10-10 3.9 × 10-9 4.4 100:0M08 4 2.4 × 10-9 3.4 × 10-9 1.4 100:0 X13 4 1.7 × 10-9 1.2 × 10-8 7.1 100:0M15 4 2.8 × 10-9 5.4 × 10-9 1.9 99:1 X24 4 1.8 × 10-9 5.6 × 10-10 3.2 100:0M26 4 2.9 × 10-9 6.1 × 10-9 2.1 100:0 X33 2 2.1 × 10-9 2.3 × 10-9 1.1 100:0X07 4 2.9 × 10-9 7.8 × 10-9 2.7 100:0 X10 4 3.0 × 10-9 3.5 × 10-9 1.2 100:0M23 4 4.8 × 10-9 3.2 × 10-9 1.5 100:0 X09 4 3.0 × 10-9 2.7 × 10-9 1.1 100:0M11 8 5.0 × 10-9 5.6 × 10-9 1.1 100:0 M20 4 3.3 × 10-9 1.1 × 10-8 3.3 100:0X31 8 5.2 × 10-9 5.2 × 10-9 1.0 100:0 M13 4 4.3 × 10-9 2.2 × 10-9 2.0 100:0M25 2 5.4 × 10-9 1.7 × 10-8 3.2 100:0 M02 4 7.0 × 10-9 5.5 × 10-9 1.3 99:1X23 8 6.0 × 10-9 6.5 × 10-9 1.1 100:0 X19 8 1.2 × 10-8 1.2 × 10-8 1.0 100:0X15 4 6.4 × 10-9 6.2 × 10-9 1.0 100:0 X32 4 1.4 × 10-8 8.5 × 10-9 1.6 100:0M27 4 6.9 × 10-9 4.7 × 10-9 1.5 100:0 X17 8 1.6 × 10-8 2.2 × 10-8 1.4 100:0M10 4 7.2 × 10-9 3.6 × 10-9 2.0 99:1 M17 4 6.1 × 10-8 8.3 × 10-8 1.4 100:0X20 4 7.6 × 10-9 1.1 × 10-8 1.4 100:0 M06 4 8.5 × 10-7 5.5 × 10-7 1.5 97:3X02 4 8.9 × 10-9 5.9 × 10-9 1.5 100:0 M05 8 2.2 × 10-6 7.5 × 10-7 2.9 100:0X21 4 1.0 × 10-8 8.1 × 10-9 1.2 100:0

36 4 4.6 × 10-9 8.1 × 10-9 1.8 100:0X08 4 1.2 × 10-8 1.4 × 10-8 1.2 100:0
48 2 - 4.1 × 10-9 - 100:0X26 4 1.2 × 10-8 1.1 × 10-8 1.1 100:0
49 4 - 4.3 × 10-8 - 100:0X12 4 1.2 × 10-8 2.0 × 10-8 1.7 100:0
72 4 - 3.9 × 10-9 - 100:0X25 2 1.4 × 10-8 1.2 × 10-8 1.2 100:0
73 2 - 1.4 × 10-9 - 100:0M9M 4 1.5 × 10-8 2.1 × 10-9 7.1 100:0
74 2 - 1.1 × 10-9 - 100:0M18 4 1.5 × 10-8 3.9 × 10-8 2.6 100:0
77 2 - 9.1 × 10-10 - 100:0M16 4 1.9 × 10-8 1.2 × 10-8 1.6 100:0
94 4 - 1.0 × 10-8 - 100:0M29 12 2.2 × 10-8 8.1 × 10-9 2.7 100:0
95 4 - 3.2 × 10-8 - 100:0X18 2 3.2 × 10-8 5.0 × 10-8 1.6 100:0
96 4 1.7 × 10-9 2.4 × 10-9 1.4 100:0X16 4 3.7 × 10-8 3.1 × 10-8 1.2 100:0
98 4 1.8 × 10-9 7.7 × 10-9 4.3 100:0X29 2 8.1 × 10-8 1.3 × 10-7 1.6 100:0
99 4 1.5 × 10-9 3.2 × 10-9 2.1 100:0X03 8 1.1 × 10-7 3.7 × 10-8 3.4 100:0

a The protonation ratio upper:lower N atom corresponds to the scheme in Figure 1a. n/a, does not apply for three compounds bearing
only a single amine function.
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capable to quantitatively identify the correct enanti-
omer,55 demonstrating the potential of 4D-QSAR.
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