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Among the multitude of learning algorithms that can be employed for deriving quantitative structure
activity relationships, regression trees have the advantage of being able to handle large data sets, dynamically
perform the key feature selection, and yield readily interpretable models. A conventional method of building

a regression tree model is recursive partitioning, a fast greedy algorithm that works well in many, but not
all, cases. This work introduces a novel method of data partitioning based on artificial ants. This method is
shown to perform better than recursive partitioning on three well-studied data sets.

[. INTRODUCTION

The use of artificial intelligence algorithms, such las
nearest neighbors, classification and regression trees, and

neural networks, for structureactivity correlation has vastly ves . yes no
increased over the past few years, due to the growing
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availability of biological data and the rising demand for more 3 2 2 3

accurate and interpretable models for pharmaceutical deveI—F. . : -

. igure 1. A regression tree trained on a sample data set consisting
opment. Regression tréesffer several advantages over 19 training cases with 2 predictor variablesandx,. During
alternative quantitative structur@ctivity relationship (QSAR)  the growing stage, internal tree nodes are assigned test conditions,
methodologies, including simplicity, interpretability, and the e.g.,x; < 0.3, by a data partitioning algorithm. If a case satisfies

ability to handle large data setsA regression tree model the condition in a node, it proceeds to the left subtree. Otherwise
: : i it goes to the right subtree. Any case with a given set;&ndx;
can be viewed as a special type of decision tree that relate#’eaches a unique tree leaf. A prediction model is stored in each

a continuous target variable (activity) with a set ofM leaf, such that the predicted activity of a case is the average activity
predictor variables, k = 1, ..., M (molecular property of the training cases that reached the same leaf. Leave-one-out

descriptors). Creating a regression tree model usually in- predictions for a training caseare made by excluding from the
volves two stages: growing and pruning. The growing stage S]verrage,le;g.,rths I?a\r/]e_- O”ert pied'cféorﬁ“n(yéﬂ)ﬁ)/ 2| \fltvmlet
attempts to partition the training data in a way that minimizes |e§f. egular prediction isy¢ + v, + ye)/3 given by the leftmos
the mean squared error (\I)IZiN:l(yi — §)%, whereN is the
number of training cases aydandy; are the measured and  partitioning decisions, it produces better quality tree models
predicted activities of thith case, respectively. The resulting than those obtained by RP.
tree is then pruned; i.e., some of the lower branches are
eliminated to avoid poor partitioning decisions based on small Il. METHODS
data samples in the lower levels of the tree. A prediction of
the target variable from a given set of values for the predictor
variables is made by traversing the tree until a leaf is reached.
The predicted value is calculated from a model, e.g., the
average or some other linear model, that is derived from the
training cases associated with this leaf (see Figure 1).
While there are a multitude of methods for pruning a
regression tree and a variety of different models that can be
used in the tree leaves, the growing stage almost invariably
employs a greedy recursive partitioning (RP) algorithm that
finds the best possible split for each tree node as growing
proceeds. RP often provides a good tree model; however, it
rarely results in the optimal tree. In this paper we introduce
a novel stochastic partitioning algorithm for growing regres-
sion trees, ANTP, that is based on artificial ant colony
systems.Because ANTP allows exploration of possible data

The algorithms based on artificial ant systems are inspired
by the fact that real ants, using deposits of pheromone as a
communication agent, are able to find the shortest path
between a food source and their neAtmoving ant deposits
pheromone on the ground, thus marking its path. Although
each individual ant moves at random, it can detect pheromone
trails and follow one of them with a probability proportional
to the amount of pheromone on the trail. By adding its own
pheromone deposits, the ant reinforces the trail and makes
it more attractive to the other ants. While all paths are initially
equally probable, the shorter ones encounter more ants
making round trips to the food source per time unit and,
therefore, receive more pheromone. Thus, short paths become
increasingly more attractive to the ants. Eventually, all ants
follow the shortest trail.

In the application at hand, each ant represents a regression
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of all the “ant” trees encountered in the course of the the largestRZ, is recorded. Because finding the best
simulation. The.g.rowing process ponsi;ts of recursive binary possible tree is a multimodal optimization problem, this
splits of the training cases contained in the tree leaves. Forprocess should be repeated several times to minimize the

each leaf node one must choose a descriptand a value likelihood of accidental convergence to a poor local mini-
of this descriptory. The cases are then partitioned into the mum.
left and right leaves on the basis of the condition To assess the effectiveness of the ANTP algorithm, we
compare its results to those of a completely random search
Xi = Uk (1) in regression tree space for each data set. Random tree

generation starts with a single tree node containing all
training cases. At each step, the training cases in a randomly
lit o — % most commonly one that minimizes th m selected leaf node are partitioned according to eq 1 into two
SPIL 2= X, MOSt commonly one that s the SUM  subsets that are placed into two newly formed leaf nodes by
of squared deviations in the two resuilting lealgs, (yi — randomly choosing a descriptér and its valuew. This

V)2 + YRy — Yr)% wheren,, ¥, ng, and yg are the  process is repeated until the stopping criteria are met.
number of cases and the average of the target variable in' \ye demonstrate the use of the ANTP algorithm on three
the left and right leaves, respectively. In contrast, ANTP \ye|l-studied data sets: antifilarial activity of antimycin
selectsk and » randomly on the basis of a probability  anaj0gues (AMAY, binding affinities of ligands to benzo-
distribution that reflects the amount of pheromone deposited diazepine/GABA receptors (BZ§, and inhibition of dihy-

in the reference tree. During initialization, unique valugs drofolate reductase by pyrimidines (PYRFor each data

of each predictor variableare sorted and distributed into a ¢4t \ye repoer andR2 of the best model obtained in two
small preset number of bins, so that each bin contains anggies of 10 a‘;‘]’d 1000 runs of random search and ANTP
approximately equal number of close values. Each node Ofalgorithms. In each run of the ANTP algorithm, 2000 ant
the referen_qe tree contains the weighiscontributing to trees were grown, with the weights andw, initiaiized to

the probability 0.01,N, = 10, pp = 0.5, and the weight increments set to
0.1. The scaling functiog(x) in eqs 4a and 4b was set to

wherexy; is the value of descriptds for casei. RP tests all
possible combinations d€ andi to find the best possible

P =W/ ZWk 2

g(x) = 2°6™~ 1)/(5"~ 1) (6)
of choosing descriptork for splitting the data in the
corresponding ant tree node, as well as weighjsfor each whered is the depth of the tree at the given node. The choice
of the bins, wheren = 1, ...,N, (Ny is the number of bins).  of this function emerged from two considerations. First, the
After kiis chosen, the algorithm identifies the valugsthat scaling function should allow distinguishing better models.
can be used for splitting, and the bins to which they belong. The function given by eq 6 increases 5-fold »as= RZOO
One of these bing, is chosen randomly with a probability  increases by 0.2. Second, the deeper the node is located in
the reference tree, the fewer ant trees will sample the possible
Po = Wi/ Zwk,b (3) splits at that node. The factof @/as introduced to partially
compensate for that. Each random search run generated 2000

and the best possible split value within this bin is selected. Fandom trees and saved the one with the larggst In all
With a probabilitypo, the latter choice can be replaced by a calculations, the stopping criterion of a minimum of f_|ve
search for the overall best split value among the identified €ases per tree leaf was employed. The reported time is the
bins. In addition, the last split in each tree branch is chosen total CPU time required to complete one run on a 733 MHz
in a greedy fashion, i.e., by finding the best possible split Pentium lIl processor. . _
among all possiblé&k andi. Once the ant tree growth is All programs were implemented in thetG@- programming
completed, for each of its nodes the weightandw,, are ~ 'anguage and are part of the DirectedDiversigpftware
updated by adding “pheromone” on the corresponding nodessuite. They are based on 3-D|menS|onaI Pharmaceutlpals’
of the reference tree according to the pheromone update ruledMt++ class library and are designed to run on all Posix-

defined by egs 4a and 4b compliant Unix and Windows platforms. Parallel execution
on systems with multiple CPUs is supported through the
W, =w, + Aanrg(Rlzo 2 (4a) multithreading classes of Mt+. All calculations were

carried out on a Dell workstation equipped with two 733

Wyep = W + AWbing(Rlzoo) (4b) MHz Pentium Il Intel processors running Windows NT 4.0.

Awyar and Awyin are the weight incrementg(x) is a scaling 1. RESULTS AND DISCUSSION

function, andRZ,, is the “leave-one-out” correlation coef- The values ofR2, and R? obtained after the growing
ficient defined by eq 5, wherg is the prediction for case  stage by RP and by 10 runs of ANTP and random search
made without taking that case into account (see Figure 1) are presented in Table 1. For all three data sets ANTP
N N significantly improved the model produced by RP, thereby
Rf =1-S(y - 37-)2/ (v — y)2 (5) providing better starting points for the pruning stage. For
00 b : the BZ and PYR data sets, the random search also produced
better models than RP. In addition, for the PYR data set the
andy is the average activity over all training cases. A number random search performed almost as well as ANTP. As one
of ant trees are grown consecutively, and the tree that exhibitswould expect, increasing the number of runs 10-fold
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Table 2. Comparison of Models Created by 1000 Runs of Random
Search and ANTP Algorithms and by RP

R R2

00

dataset N M random RP ANTP random RP ANTP
AMA 31 53 0.742 0.736 0.821 0.819 0.829 0.877

BZ 57 42 0.709 0.499 0.766 0.793 0.652 0.833
PYR 74 27 0.624 0.423 0.643 0.710 0.618 0.728
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Figure 2. Regression tree model generated by the RP algorithm E 600
for the BZ data set (not pruned). The notation for the descriptors z
can be found in ref 5. 400 +
200 -
0+
.14 0 02 04
ves o ves no Figure 4. Histograms of the number of tree models that were
[eens | [meoo | [228 | [0.56 | prodgced f(_)r the AMA data set by the ANTP anq random _search
algorithms in a series of 1000 runs and that exhibR&g within
yes no

yes

N each of the 50 consecutive ranges of values between 0 &R}, 1.
[owco0 | [2ams | [[2o333 [ [ zeem | of the model generated with the RP algorithm is marked with a
o black bar on both plots.

yes

| 7<0.71 | |MR7<7.36 [ 800
ves no yes no 600 | Random
| 0.9904 I | 0.7168 | | 0.5319 || 0.3576 I 400 |
Figure 3. Regression tree model generated by the ANTP algorithm 2
for the BZ data set (not pruned). The notation for the descriptors 3 200 1
can be found in ref 5. E ol
6
Table 1. Comparison of Models Created by 10 Runs of Random g 800
Search and ANTP Algorithms and by RP E 604 ANTP
=}
z
Roo R 400 -
dataset N M random RP ANTP random RP ANTP
AMA 31 53 0.681 0736 0.821 0.776 0.829 0.877 200 -
BZ 57 42 0.667 0.499 0.728 0.755 0.652 0.806 0

PYR 74 27 0.626 0.423 0.634 0.712 0.618 0.721 0 02 o4

considerably improved the outcome of the random searchrigure 5. Histograms of the number of tree models that were

due to better sampling (see Table 2). In particular, the bestproduced for the BZ data set by the ANTP and random search

Rizooz 0.742 found in the series of 1000 random search runs algorithms in a series of 1000 runs and that exhiblﬁg within

for the AMA data set exceeded the RP value of 0.736. each of the 50 consecutive ranges of values between 0 &R, 1.

However, the ANTP results changed only marginally. This of the model generated with the RP algorithm is marked with a
’ . e black bar on both plots.

reflects the advantages of the ANTP algorithm, since only

10 runs were sufficient to find a good tree model for each .
data set. To illustrate the resulting regression tree models,"dependently produced ANTP models to that of 1000 tree

the best models generated by the ANTP and RP algorithms™Models generated by random search and tdhevalue of

for the BZ data set are presented in Figures 2 and 3. the RP model. For all three data sets, the ANTP distribution
The execution time of a single ANTP run was 1.2, 1.6, exhibited a considerable shift to high&f, values with

and 2.0 s for the AMA, BZ, and PYR data sets, respectively. respect to the random search distribution, as shown in Figures

The overhead of maintaining the reference tree was minimal, 4—6. In fact, 99.3%, 99.6%, and 68.0% of the ANTP models

so the random search running time was practically the samewere better than the best randomly generated model for the

as that of ANTP. The RP algorithm is very fast; its execution AMA, BZ, and PYR data sets, respectively. Therefore, a few

time was 2-4 ms for all three data sets. runs of the ANTP algorithm are likely to produce a
The quality of the ANTP algorithm can be assessed by significantly better starting point for pruning than RP or

comparing the distribution of thé¥., values of 1000  random search.
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Figure 6. Histograms of the number of tree models that were Figure 7. Histograms of the number of tree models that were
produced for the PYR data set by the ANTP and random search produced for the AMA data set by the simulated annealing and
algorithms in a series of 1000 runs and that exhibRégd within random search algorithms in a series of 1000 runs and that exhibited

each of the 50 consecutive ranges of values between 0 &g, 1. Roo Within each of the 50 consecutive ranges of values between 0

of the model generated with the RP algorithm is marked with a and 1. Rzop of the model generated with the RP algorithm is

black bar on both plots. marked with a black bar on both plots. In each run of the simulated
annealing algorithm the temperature is reduced according to a

A ... Gaussian cooling schedule, comprising 30 consecutive temperature
Because RP performs some optimization of the splitting cycles with 2000 annealing steps performed at a constant temper-

criteria, it is natural to assume that RP would produce a better 1o during each cycle (other cooling schedules, such as linear,
model than a random search. Indeed, for the AMA data setexponential, and Lorentzian, can also be used). Each cycle starts
only 1 out of the 1000 random search runs resulted in a with the tree with the largest,, encountered during the previous
model that was slightly better than the RP model (see Figurecycle. This strategy proved to work better than starting the cycle

4). However, for the BZ and PYR data sets, the RP models with the last tree of the previous cycle. To circumvent the difficulty
; ! ' of selecting an appropriate value fik, in our implementation

(Roo = 0.423 and 0.499, respectively) were actually Worse thjs is not a true constant but is adjusted on the basis of an estimate
than virtually all 1000 models produced by random search, of the mean transition energy. In particular, at the end of each

with the IargestRZ = 0.709 and 0.624, respectively (see transition, the mean transition energy is updated, and the value of

Figures 5 and 630 This implies that for some data sets Ke is adjusted so that the acceptance probability for a mean uphill
; L Lo transition at the final temperature is 0.1%.

recursive partitioning produces results significantly worse

than those of even a short random search. by generating a series of small, stochastic steps. An objective
The ANTP algorithm is effective if (a) the ant trees function maps each state into a numeric value that measures
sufficiently sample possible splitting conditions given by eq its fitness. With respect to growing regression treestae
1 at each node and (b) accumulation of “pheromone deposits”is a unique tree that satisfies the given constraints on the
in the reference tree clearly distinguishes between “good” minimum number of training cases per leaf nodefittsess
and “bad” splits. The first condition is met by using a s the leave-one-out correlation coefficié®f,, and thestep
sufficient number of ant trees in each ANTP run. However, is eijther creation of two new leaf nodes by splitting an
since the number of nodes in the reference tree can growexisting leaf node or a reverse operation that merges two
exponentially with the number of nodes in the target tree sjpling leaf nodes back into a single node. While downhill
model, the required number of ant trees may become transitions are always accepted, uphill transitions are accepted
prohibitively large. This may limit the application of the  wjth a probability that is proportional o= e 2EeT, where
ANTP algorithm to reasonably small tree models (but not AE is the energy (fitness) difference between the two states.
necessarily small data sets). The second condition can beBoltzmann’s constanks, is used for scaling purposes, and
satisfied by selecting an appropriate scaling functygy), Tis an artificial temperature factor used to control the ability
initial WEightSWk and Wi n, and their increments. Another of the system to overcome energy barriers. Simulated
possible approach that improves convergence by graduallyannealing is effective only when the energy surface is
increasing the probability of choosing a descriptor or its value relatively smooth and the steps are local in nature. However,
with relatively large corresponding weights is to use prob- when applied to regression trees, each step can have a
abilities px = W/Twi* and py = W/ uW,, instead of dramatic impact on the fitness function. This leads to very
those given by egs 2 and 3. The parametes increasing  poor convergence of the algorithm. In fact, the distribution
linearly (or according to some other law) with each con- of the resultingR?, values is very close to that of a random
structed ant tree between 1 and some maximum value (e.g.search, as shown in Figure 7 for the AMA data set. Thus,
2 or 3). simulated annealing does not provide a significant benefit
One can also use other stochastic techniques, such asvith respect to the quality of the resulting models, and in
simulated annealing or genetic algorithms, to grow regressionaddition it is computationally expensive.
trees. Simulated annealing is a global, multivariate optimiza-  In conclusion, we developed a novel stochastic algorithm,
tion technique based on the Metropolis Monte Carlo search ANTP, for binary data partitioning. We also demonstrated
algorithm. The method starts from an initial state, and walks that for some data sets the conventional recursive partitioning
through the state space associated with the problem of interesalgorithm is inferior to random search. While the ANTP
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