ГЛАВА 4
ВЕКТОРНАЯ АЛГЕБРА
В этой главе мы возвращаемся к более конкретному понятию: вектор — направленный отрезок. Будем рассматривать направленные отрезки, расположенные не только на плоскости, но и в обычном трёхмерном пространстве. В математике, физике и их приложениях понятие вектора используется очень широко. Векторами изображаются, например, скорость и сила. С другой стороны, величины, определяемые лишь числом (и не имеющие направления), называются скалярами. Примеры скалярных величин: масса, объём.
4.1. Векторы в трёхмерном пространстве
4.1.1. Линейное пространство направленных отрезков R3
Основные понятия для векторов в трёхмерном пространстве вводятся так же, как это сделано для векторов на плоскости в разделе 3.1. Определения длины вектора, равных векторов, коллинеарных векторов, суммы векторов и произведения вектора на число не отличаются от аналогичных определений для векторов на плоскости.
Теорема 1. Множество R3 направленных отрезков в трёхмерном пространстве с операциями сложения и умножения на число образует линейное пространство над полем действительных чисел.
Доказательство должно содержать проверку 8 аксиом линейного пространства. Такая проверка была проведена в разделе 3.1 для векторов на плоскости. Но в точности те же рассуждения справедливы и для векторов из R3.
Линейные пространства R2, R3 являются хорошими, наглядными примерами. С их помощью мы сможем лучше освоить наиболее важные понятия общей теории линейных пространств.
Векторы a1, a2, ..., an из R3 называются компланарными, если они параллельны одной и той же плоскости. Заметим, что 2 вектора всегда компланарны: если их отложить из одной точки, то через неё и концы векторов всегда можно провести плоскость.
Теорема 2. Три вектора в R3 линейно зависимы ⇔ они компланарны.
|