линейных уравнений называется совместной, если у неё есть хотя бы одно решение, и несовместной, если решений нет. В примере 14 система
совместна, столбик является её решением:
Это решение можно записать и без матриц: x = 2, у = 1.
Систему уравнений будем называть неопределённой, если она имеет более одного решения, и определённой, если решение единственно.
Пример 15. Система является неопределённой. Например, ... являются её решениями. Читатель может
найти и много других решений этой системы.
Научимся решать системы линейных уравнений сначала в частном случае. Систему уравнений AX = B будем называть крамеровской, если её основная матрица А — квадратная и невырожденная. Другими словами, в крамеровской системе число неизвестных совпадает с числом уравнений и |A| = 0.
Теорема 6 (правило Крамера). Крамеровская система линейных уравнений имеет единственное решение, задаваемое формулами:
где Δ = |A| — определитель основной матрицы, Δi — определитель, полученный из A заменой i-го столбика столбиком свободных членов.
Доказательство проведём для n = 3, так как в общем случае рассуждения аналогичны.
Итак, имеется крамеровская система:
Допустим сначала, что решение системы существует, т. е. имеются
Умножим первое . равенство на алгебраическое дополнение к элементу aii, второе равенство — на A2i, третье — на A3i и сложим полученные равенства:
|