остальных уравнений. Значит, числа ... являются решением системы, система совместна.
Теорема доказана.
Замечание. Крамеровские системы можно решать и по-другому, с помощью обратной матрицы. Запишем такую систему в матричном виде: AX = B. По теореме Крамера, существует решение T : AT = B. Так как |А| = 0, то существует обратная матрица A-1. Умножаем матричное равенство на A-1 слева: получаем:
Такой способ решения будем называть матричным. Ещё раз подчеркнём, что он годится только для крамеровских систем — в других случаях обратной матрицы не существует. Разобранные примеры применения матричного метода и метода Крамера читатель найдёт ниже.
Изучим, наконец, общий случай — систему m линейных уравнений с n неизвестными. Для её решения применяется метод Гаусса, который мы рассмотрим подробно.
Для произвольной системы уравнений AX = B выпишем расширенную матрицу. Так называется матрица, которая получится, если к основной матрице A справа дописать столбец свободных членов B:
Заметим: не только для системы уравнений можно выписать такую матрицу, но и наоборот: зная матрицу, можно восстановить систему. Как говорят, системе уравнений однозначно соответствует матрица.
Как и при вычислении ранга, с помощью элементарных преобразований строк и перестановок столбцов будем приводить нашу матрицу к трапециевидной форме. При этом, конечно, соответствующая матрице система уравнений изменится, но будет равносильна исходной (т. е. будет иметь те же решения). В самом деле, перестановка или сложение уравнений не изменят решений. Перестановка столбцов — тоже: уравнения xi + 3x2 + 7x3 = 4 и xi + 7x3 + 3x2 = 4, конечно, равносильны. Нужно только записывать, какой неизвестной соответствует данный столбец. Столбец свободных членов не переставляем — его обычно в матрице отделяют от других пунктиром. Возникающие в матрице нулевые строки можно не писать. В результате этой работы возможны 3 варианта.
|