Характер зависимости (2.2.7) показан на рис. 2.2.5, где сплошные жирные линии дают график результирующего колебания, а огибающие их - график медленно меняющейся по уравнению (2.2.7) амплитуды.
Определение частоты тона (звука определенной высоты) биений между эталонным и измеряемым колебаниями - наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.
Рис. 2.2.5. Модулированные колебания
Вообще, колебания вида x = A(t) cos[ω0t + φ(t)] называются модулированными. Частные случаи: амплитудная модуляция и модулирование по фазе или частоте. Биение - простейший вид модулированных колебаний.
2.2.3. Сложение взаимно перпендикулярных колебаний
Пусть некоторое тело колеблется и вдоль оси x, и вдоль оси у, т. е. участвует в двух взаимно перпендикулярных колебаниях:
Найдем уравнение результирующего колебания. Для простоты примем ω1 = ω2 = ω.
Разность фаз между обоими колебаниями равна Δφ = φ2 - φ1.
Чтобы получить уравнение траектории, надо исключить из этих уравнений время t. Упростим выражения, выбрав начало отсчета так, чтобы φ1 = 0 , т. е.
|