Из формулы (3.6.9) следует, что при испарении энтропия воз-растает, а при конденсации - уменьшается.
Физический смысл этого результата состоит в различии фазовой области молекулы в жидкости и газе. Хотя в жидкости и газе каждой молекуле доступна вся область пространства, занятая системой, но сама эта область для жидкости существенно меньше, чем для газа. В жидкости силы притяжения между молекулами удерживают их на определенном расстоянии друг от друга. Поэтому каждая молекула хотя и имеет возможность свободно мигрировать по области пространства, занятой жидкостью, но не имеет возможности «оторваться от коллектива» остальных молекул: стоит ей оторваться от одной молекулы, как тут же притягивается другая. Поэтому объем жидкости зависит от её количества и никак не связан с объемом сосуда.
Молекулы газа ведут себя иначе. У них гораздо больше свободы, среднее расстояние между ними таково, что силы притяжения очень малы и молекулы «замечают друг друга» лишь при столкновениях. В результате газ всегда занимает весь объем сосуда.
Поэтому при равных температурах фазовая область молекул газа значительно больше фазовой области молекул жидкости и энтропия газа больше энтропии жидкости. Газ, по сравнению с жидкостью, гораздо менее упорядоченная, более хаотичная система.
3.6.4. Второе начало термодинамики
Термодинамика - это наука о тепловых процессах, о превращении тепловой энергии. Для описания термодинамических процессов первого начала термодинамики недостаточно. Выражая общий закон сохранения и превращения энергии, первое начало не позволяет определить направление протекания процессов.
Второе начало термодинамики является фундаментальным законом природы. Он охватывает многочисленные явления окружающего мира и имеет глубокие практические и философские последствия. Второе начало устанавливает существование у всякой равновесной системы однозначной функции - энтропии, которая не изменяется при равновесных процессах и всегда возрастает при неравновесных.
В 1824 г. Карно доказал, что для работы теплового двигателя необходимо не менее двух источников теплоты с различными температурами. Невозможность создания вечного двигателя второго рода подтверждается вторым началом термодинамики.
Приведем некоторые формулировки второго начала термодинамики:
|