Минимальная энергия E0 = ½ħω называется нулевой энергией, т.е.
при T = 0 К колебания атомов в кристаллической решетке не прекращаются.
В квантовой механике вычисляется вероятность различных переходов квантовой системы из одного состояния в другое. Для гармонического осциллятора возможны лишь переходы между соседними уровнями.
Условия, накладываемые на изменения квантовых чисел при переходах системы из одного состояния в другое, называются правилами отбора. Для гармонического осциллятора правило выражено формулой
...
Из (2.5.12) вытекает, что энергия квантового осциллятора изменяется только порциями, т.е. квантуется. Причем, как и в прямоугольной яме, энергия ограничена снизу минимальным значением
E0 = ½ħω
- энергия нулевых колебаний (прямое следствие соотношения неопределенностей). Это означает, что частица не может находиться на дне потенциальной ямы.
Плотность вероятности нахождения частицы |Ψ|2 = Ψ·Ψ изображена на рис. 2.5.2, б. Как и в случае прямоугольной потенциальной ямы, при n = 2 в середине ямы частица находиться не может. Это совершенно непонятно с классической точки зрения. Квантуется не только энергия, но и координата частицы.
Строгое квантово-механическое решение задачи о гармоническом осцилляторе приводит еще к одному существенному отличию от классического рассмотрения. Оказывается, что можно обнаружить частицу за пределами дозволенной области: от xmin до xmax (рис. 2.5.4), т.е. за
точками 0 и l (см. рис. 2.5.1).
|